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NCC 2-585

ANNUAL REPORT

Technical Proposal

The objective of the present work is to develop, verify and incor-

porate two-equation turbulence models which account for the effects of

compressibility at high speeds into a three-dimensional Reynolds av-

eraged Navier-Stokes (RANS) code and to provide documented model

descriptions and numerical procedures so that they can be implemented

into the NASP CFD codes.

Computational Fluid Dynamics (CFD) is recognized as a signif-

icant engineering design tool in modern hypersonic projects such as

the National Aerospace Plane (NASP). The design of the NASP ve-

hicle is a highly complex process. One of the critical tasks involved

in such a process is the ability of the turbulence model to predict

hypersonic viscous/inviscid interactions, mixing problems, transition,

chemical nonequilibria, and a range of other turbulence phenomena.

Turbulence models are developed on the basis of insight gained from

experimental and theoretical research. The complexity of turbulence

requires that the mathematical models be guided by the flow physics in

a rational and practical approach. Test and validation of new models

with data of recognized quality is an essential step toward model ac-

ceptability. A database of high speed turbulent flows is currently being

completed. This database provides a benchmark for testing and vali-

dation of new compressible models. Specific topics for the database are

high-speed attached boundary layers with pressure gradients, super-

sonic shear layer mixing, and shock wave/boundary layer interactions.



The turbulence models will be implemented into the Ames 3-D

Navier-Stokes codes selected on the basis of several criteria includ-

ing speed, accuracy, user friendliness, and generality (grid, geome-

try, boundary conditions). The two-equation models will be validated

first against the hypersonic database collection. A major consideration

throughout the research effort is the development of improved com-

pressibility corrections to the turbulence models and the identification

of models which are superior in their predictive capabilities.

Work Statement

The following is the work statement proposed to be accomplished

within the first research year:

1. Evaluate available NASA Ames 3-D RANS codes and make a se-

lection based on speed, accuracy, user friendliness and generality.

2. Incorporate candidate compressible turbulent flow models into the

3-D code and validate against simple attached flows.

3. Initiate 3-D computations of flows contained in hypersonic database

collection.



Work Accomplished

A summary of the work already accomplished in the first research

year is outlined below:

1. Four NASA Ames 3-D RANS codes have been tested and evaluated

against a flat plate boundary layer flow and an external supersonic

flow. The codes used in this study are RANS, CNS, FLO2, and

IZTUFF.

2. Based on speed, accuracy, and user friendliness for this research,

the code RANS has been selected as the basic code to test the tur-

bulence models. Work is in progress assisting in the implementation

of the turbulence models into CNS, FLO2 and IZTUFF.

3. The code RANS has been extended from thin boundary layer to

full Navier-Stokes.

4. The k- _o two-equation turbulence model has been implemented

into the base code. Tests base on supersonic flow at M_ = 5 on a

cooled flat plate show good agreement with theory and with 2-D

numerical simulations (Thomas Coakley's code).

5. A 24 ° laminar compression corner flow has been simulated and the

extend of the separation zone compared against other numerical

simulations (George Huang, Tom Coakley, Langley's codes).

6. A NAS account has been obtained to simulate 3-D turbulent flows.

7. Work is in progress in the writing of the numerical method of the

base code including the turbulence model.



Code Evaluation Criteria

The main purpose of the first task was to evaluate and select the 3-D

NASA-Ames Reynolds Averaged Navier-Stokes (RANS) code or codes

in order to implement and test compressible turbulence models in the

simulation of complex high-speed flows with turbulence interactions.

A guideline of various selection criteria and a guideline of the differ-

ent numerical methods were designed. The various selection criteria

included speed, accuracy, user friendliness and generality. The numer-

ical methods are described including equations, capability, discretiz-

ing method, convective terms treatment, boundary conditions, viscous

terms treatment, conservative properties, iteration method, and time

advance method.

These guidelines are shown next:



Selection Criteria

We are in the process of selecting the 3-D NASA-Ames Reynolds

Averaged Navier-Stokes (RANS) code or codes in order to implement

and test compressible turbulence models in the simulation of complex

high-speed flows with turbulence interactions. The selection is based

on various criteria including accuracy, efficiency, user friendliness, and

generality.

Accuracy:

conservation of mass, momentum, and energy.

shock capturing capability.

present validations with experimental data.

• Efficiency:

total convergence time to steady-state solutions.

relative speed: cpu seconds/iteration grid-point.

robustness.

stability.

implicit/explicit numerical scheme.

implicit/explicit boundary conditions.

data storage requirements.



• User Friendliness:

user interface.

instruction manual.

input parameters definition.

time-step definition.

data transfer and management.

• Generality:

Navier-Stokes method, PNS method.

single/multiple grids.

single/multiple patches in each grid.

simple/complex geometries.

simple/complex flows.

single/general boundary conditions.

pseudo-time relaxation, time accurate.

turbulence models.

chemistry capability (equilibrium, non-equilibrium).



Numerical Methods

A general description of the numerical method is required including

the discretizing method, the treatment of the convective terms, bound-

ary conditions, conservative properties, iteration or relaxation method,

and time advance method.

• Equations:

Mass, momentum, and energy equations.

Identify Navier-Stokes terms not included.

Present program status.

Navier-Stokes, thin layer, Euler.

elliptic, hyperbolic, parabolic.

time relaxation, time accurate.

compressible, incompressible.

perfect gas, real gas.

source terms.

turbulence models.

• Capability:

type of problems successfully solved.

program verifications.

documentation, user friendliness.

program availability and support.



• Discretizing method:

finite difference, finite volume, finite element.

regular or staggered grid.

simple or multiple grids.

simple patch or multiple patches in each grid.

structured, unstructured grids.

Convective terms treatment:

explicit or implicit method.

central differencing, upwind differencing, or hybrid.

artificial dissipation, natural dissipation.

shock treatment, sonic treatment.

flux-difference splitting, flux-vector splitting.

first order, higher order.

TVD, ENO, unconditionally stable.

Boundary conditions:

flow through (inflow, outflow, mixed; fixed).

wall (adiabatic, fixed temperature, inviscid).

symmetry (axis, planes, grid-axis).

characteristic, primitive, or conservative variables.

explicit or implicit scheme.

general optional lists or code dependent.
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• Viscous terms treatment:

no viscous, laminar, and/or turbulent capability.

explicit or implicit method.

central differencing, upwind differencing, or hybrid.

first order, higher order.

turbulence models incorporated in the code.

uncoupled or coupled relaxation of turbulence model equations.

boundary conditions of turbulent quantities.

• Conservative properties:

mass, momentum, energy.

strongly conservative, weakly conservative, non-conservative or

mass only conservative.

• Iteration method:

approximate factorization, relaxation, or hybrid.

matrix inversion, ADI, DDADI (diagonal-dominant ADI).

non, over, or under relaxation.

point, line ,plane substitution.

Newton-Raphson acceleration.

• Time advance method:

explicit/implicit.

first order, higher order.

pseudo-time relaxation, time accurate.



3-D Codes

The four NASA Ames Research Center codes included in this study

are RANS, CNS, FLO2, and IZTUFF. All these codes have been previ-

ously used to simulate high speed compressible flows using the three-

dimensional thin layer Reynolds Averaged Navier-Stokes equations.

The schemes used in these codes are total variation diminishing (TVD)

based on flux limiters in the higher-order fluxes. They are spatially

second or higher-order accurate with first-order accuracy in the vicin-

ity of shocks. None of the available codes have a manual or a standard

code description available. These are all research codes under develop-

ment and they have been previously used to simulate complex flows in

complex geometries. A brief description of these codes is given below.

RANS Code. This code is under development in the Experimen-

tal Fluid Dynamics Branch by the investigator of this research,

Dr. Jorge Bardina. It is a 3-D implicit finite difference Reynolds-

Averaged Navier-Stokes algorithm written in generalized curvilin-

ear coordinates. It is based on a flux difference splitting method

which is described in Appendix A under the denomination RANS

method. It was developed based on the CSCM code 1-_ written by

this researcher in the Aerothermodynamics Branch coupled with

ideas obtained from Roe's flux difference method 5. During this

research work, this code has been extended to simulate the full

Navier-Stokes equations with a general two-equation eddy viscosity

turbulence model.

Equations: It solves the 3-D compressible mass, momentum,

and energy Navier-Stokes equations. Presently, it has the ca-

10



pability to solve the full Navier-Stokes, thin layer, and/or Euler

equations.

Capability: It is a research code under development. Its base

code has been extensively applied in the simulation complex

3-D hypersonic, supersonic, transonic, and low speed flows on

complex configurations, internal and external flows. There is

little code documentation available at present time. The inves-

tigator in this research has expertise with this code.

Discretizing method: It uses a finite difference on regular simple

or multiple-patch grids.

Convective terms treatment: The convective terms are treated

using higher order TVD implicit upwind flux difference splitting

with flux limiters and no explicit artificial dissipation. The

flux limiters are based on the "minmod" method of Osher and

Chakravarthy 6. The averaging procedure is similar to the Roe's

scheme, but simpler; it is based on simple arithmetic averaging

of primitive variables. However, the coefficients of the Jacobian

matrices are more complex (see Appendix A). It captures shock

within two to three grid points.

Boundary conditions: The boundary conditions are implicit and

they are input through a general optional list of input coef-

ficients. They include various flow conditions, such as, flow

through (inflow, outflow, mixed, fixed), wall boundaries (invis-

cid, viscous, adiabatic, fixed temperature distribution), symme-

try boundaries (axis, planes), grid axis singularity (in symmetry

plane) along each coordinate direction.

Viscous terms treatment: The viscous terms are differenced us-

11



ing an implicit central difference algorithm. They include lam-

inar and turbulent capability. The turbulence model incorpo-

rated in this code is the Baldwin and Lomax mixing length

modeV. Presently, a two equation k- ,_ turbulence modeP has

also been incorporated and tested.

Conservative properties: Conservation of mass, momentum and

energy is obtained once convergence is achieved using second or

higher order differences.

Iteration method: The iteration procedure is based on an al-

ternating symmetric plane Gauss-Seidel relaxation procedure

coupled with a DDADI diagonal-dominant approximate factor-

ization within the relaxation plane. It provides the capability

to perform full Navier-Stokes simulations and/or marching pro-

cedure similar to PNS methods. It includes a Newton-Raphson

acceleration procedure for faster convergence. It has the capa-

bility to advance the solution in forward sweeps and/or back-

ward sweeps. The solution procedure is generally from the in-

flow plane through the outflow plane firstly, and from the out-

flow plane through the inflow one secondly. In supersonic zones,

the best procedure is to advance the solution in the streamwise

direction only.

Time advance method: The time advancing is first order with

capability for uniform time step or local time step based on

local CFL number. The time step can be increased within the

boundary layers following T.J. Coakley's approach to increase

convergence speed 9. It can be easily modified to perform time-

accurate simulations (It has been done and tested previously).

12



CNS Code. The Compressible Navier-Stokes (CNS) code is under

development in the Applied Computational Fluids Branch. The

researchers that provided this code for this research work included

Dr. Terry Holts, Dr. Thomas Edwards, and Dr. Bradford Bennett.

It is a 3-D thin layer Navier-Stokes solver in generalized curvilinear

coordinates on regular zonal grids 1°-13. The flow solver is based on

F3D flux vector splitting of Steger and Warming 14, and the zonal

interface logic is derived from the TNS (transonic Navier-Stokes)

code 15. The general treatment of the flux vector splitting is briefly

described in Appendix A as the Steger and Warming method.

Equations: It solves the 3-D compressible mass, momentum,

and energy Euler or thin layer Navier-Stokes equations. It in-

cludes an air model for equilibrium chemistry.

Capability: It is a research code under development. It is based

on the F3D solver that have been extensively applied into the

simulation of 3-D transonic flows and several hypersonic exter-

nal flows. There is no manual and little code documentation is

available.

Discretizing method: It uses a finite difference on regular zonal

grids.

Convective terms treatment: The flux vector splitting of Ste-

ger and Warming is applied in the streamwise direction, and

central differencing is used in the crossflow directions. Explicit

fourth-order (or second-order times pressure gradient ) artificial

dissipation is added to the right-hand-side in the crossflow di-

rections to achieve stability with the central difference method.

Boundary conditions: The boundary conditions are explicit and
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have to be defined in a special subroutine. Present boundary

conditions include outflow, freestream, no slip, reflection, axis

of symmetry, and singularity line at given grid indices.

Viscous terms treatment: The viscous terms are differenced us-

ing an implicit central difference algorithm. They include lam-

inar and turbulent capability. The turbulence model incorpo-

rated in this code is the Baldwin and Lomax mixing length

modeF.

Conservative properties: Conservation of mass, momentum and

energy is obtained once convergence is achieved using second or

higher order differences.

Iteration method: The flow solver is the F3D which is a two-

factored flux split algorithm proposed by Ying and Steger '6.

The iteration procedure is a LU-ADI method based on the ADI

approximate factorization of Beam and Warming '7. The first

left-hand side operator includes a block lower triangular matrix

coupled with a block tridiagonal matrix in one crossed flow

direction. The second left-hand side operator includes a block

upper triangular matrix coupled with a block tridiagonal matrix

in the other crossed flow direction.

Time advance method: The time advancing is first order with

capability for uniform time step or locM time step based on

zonal CFL number.
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FLO2 Code. This code is under development in the Aerothermody-

namics Branch by Dr. Ethiraj Venkatapathy. It is a 3-D implicit,

finite volume, thin layer, Reynolds Averaged Navier-Stokes method

in generalized curvilinear coordinates 18-21. This code is based on

a LDU-ADI diagonal algorithm developed by Dr. S. ObayashP 8

with Roe's averaging s and finite differences with MUSCL extrapo-

lation. Roe's flux difference splitting method used in this code is

also briefly described in Appendix A.

Equations: It solves the 3-D compressible mass, momentum,

and energy Euler or thin layer Navier-Stokes equations. It

solves ideal gas and/or chemically frozen flows.

Capability: It is a research code under development and it has

been extensively applied into the simulation of 3-D complex

plume flows. There is no manual and little code documentation

is available.

Discretizing method: It uses finite differences on regular grids.

Convective terms treatment: It is a TVD algorithm based on

Roe's averaging and upwind flux-difference splitting approxi-

mate Riemann solver with entropy correction. The MUSCL dif-

ferencing approach is used to obtain spatially second- or third-

order accuracy with flux limiters. The flux limiters include the

"minmod" limiter of Osher and Chakravarthy 6, second-order

UNO, second-order differentiable limiter.

Boundary conditions: The boundary conditions are treated ex-

plicitly. Present boundary conditions include inflow, outflow,

freestream, no slip, reflection and axis of symmetry.

Viscous terms treatment: The viscous terms are differenced us-

15



ing an implicit central difference algorithm. They include lam-

inar and turbulent capability. The turbulence model incorpo-

rated in this code is the Baldwin and Lomax mixing length

modeV.

Conservative properties: Conservation of mass, momentum and

energy is obtained once convergence is achieved using second or

higher order differences.

Iteration method: The iteration procedure is based on a scalar-

matrix operator to obtain steady-state solutions. It is derived

from an approximate diagonalization of the LU-ADI implicit

operators in the implicit nonconservative form like Pulliam and

Chaussee's diagonal algorithm 22. It consists of three sweeps

with a lower, a diagonal, and an upper operator in each coor-

dinate direction.

Time advance method: The time advancing is first order with

capability for uniform time step or local time step.

16



• IZTUFF Code. This code is under develop ment by Dr. Gregory

Molvik in the Applied Computational Fluids Branch. It is a 3-D

implicit finite volume thin-layer Reynolds-Averaged Navier-Stokes

method in generalized curvilinear coordinates _3-:4. This code has

mainly been used to compute the external forebody flow field of

3-D bodies, in conjunction with a parabolized Navier-Stokes (PNS)

code to solve 3-D ideal, equilibrium-, or nonequilibrium-chemistry

external flows. This code also uses Roe's method of flux difference

splitting described in Appendix A.

Equations: It solves the 3-D compressible mass, momentum,

and energy thin layer Navier-Stokes equations.

Capability: It is a research code under development. It has been

extensively applied in the simulation of complex external con-

figurations including nonequilibrium chemistry. There is little

code documentation available at present times.

Discretizing method: It uses finite volume on regular grids.

Convective terms treatment: It is a TVD scheme using Roe's

upwind-biased flux-difference splitting approximate Riemann

solver 5 with entropy correction. The "minmod" flux limiter

of Osher-Chakravarthy 6 is used to obtain spatially second- or

third-order accuracy.

Boundary conditions: The boundary conditions are explicit and

include viscous wall, symmetry plane, and frozen supersonic

inflow.

Viscous terms treatment: The viscous terms are differenced us-

ing an implicit central difference algorithm. They include lam-

inar and turbulent capability. The turbulence model incorpo-

17



rated in this code is the Baldwin and Lomax mixing length

model 7.

Conservative properties: Conservation of mass, momentum and

energy is maintained through the finite volume approach when

convergence is achieved using second or higher order differences.

Iteration method: The iteration procedure is based on the 3-D

ADI approximate factorization of Beam and Warming 17

Time advance method: The time advancing is first order with

capability for uniform time step or local time step based on

local CFL number. It can be easily modified to perform time-

accurate simulations.

18



Codes Performance

The predictive capabilities of the 3-D Reynolds averaged Navier-

Stokes codes are well known through the different applications shown

in available publications (see previous section). The main objective of

the present work is to analyze and test this codes in order to gain a

better understanding on their accuracy, efficiency, user friendliness, and

generality.

A few tests of inviscid and laminar flows have been simulated.

These simulations include a supersonic free flow, an hypersonic blunt

body, and a supersonic flat plate. Some of the results of these simu-

lations are shown below. In each case, the simulations used the same

grid and started with the same initial flow field; the flow variables were

read and rewritten following the particular non-dimensional system of

each code.

Figure 1 shows the residual history of a supersonic free flow with

M_ = 4. In this case, the mesh had 11xllx11 grid points equally spaced.

The residuals were defined as the sum of the square residuals of the en-

ergy equation divided by the number of grid points and the CFL num-

bet. The energy residual is usually the largest one when it is compared

with the residuals of the other conservative variables. The CFL factor

is removed from the residuals in order to get independence from varia-

tions in the time step or CFL number. IZTUFF achieved a convergence

of the order of 10-14 and in about 30 iterations with a CFL = 50; minor

code modifications were needed in order to achieve convergence. RANS

achieved a convergence of the order of 10-11 in about 30 iterations with

a CFL = 50; faster convergence is obtained when the Newton-Raphson

19



acceleration cycle is increased. CNS achieved a convergence of the or-

der of 10-11 in about 290 iterations with a TSTEP = 5; simulations with

higher values of TSTEP produced negative pressure or density values,

while lower values of this parameter increased the number of iterations

needed to achieve convergence. FLO2 did not achieved a fast conver-

gence, the residuals were of the order of 7.10 .6 after 9000 iterations with

a CFL = 50. Some of the differences can be explained by the differences

in the treatment of the fluxes, however, the results are user dependent

and code modifications can produce significant improvements.

Figure 2 shows the residual history of a supersonic laminar flow

with Moo = 4 and Re = 10_. on an adiabatic fiat plate. The mesh had 51

points along the plate, 31 points from the wall through the free stream,

and 31 points across the main flow. RANS, CNS and FLO2 achieved

a convergence of 10-9 in about 25, 400, and 3000 iterations, respec-

tively. RANS was run with CFL = 10000 and four Newton-Raphson

acceleration cycles. CNS was run with TSTEP = 25 and FLO2 was

run with CFL = 25.0. A slight improvement was observed with FLO2

when CFL = 2, larger or smaller values of CFL decreased the conver-

gence history of FLO2. Dr. E. Venkatapathy achieved convergence in

about 1000 iterations instead of 3000 iterations when FLO2 was run as

a 2-D plane; this kind of improvement was also observed in the other

codes. The convergence history of IZTUFF is not included because the

residuals did not decrease after 1400 iterations with CFL = 0.9; since

this code is in a developmental stage, it is considered that some code

modifications are required in this version.

Although the residual history indicates the number of iterations
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needed to achieve convergence, different codes and methods require

different amounts of time and memory to complete each iteration. The

following table shows the MIPS (millions of instructions per second),

MFLOPS (millions of floating operations per CPU second), and SPEED

(CPU micro-seconds per iteration and per grid point) obtained with

each code in the simulation of the flat plate in the Cray-YMP "eagle"

at NASA Ames Research Center.

Table 1. Codes Performance in Cray-YMP

Code MIPS MFLOPS SPEED

RANS 40 123 165.6

CNS 54 82 51.4

FLO2 34 124 50.7

IZTUFF 59 40 287.1

This table shows that the CNS and FLO2 codes are the fastest codes

per iteration, the RANS code is about 3.__22times slower and the IZTUFF

code is about 5.6 times slower than the other two codes. All the codes

have been run with a single procesor which has a maximum capability

of about 300 MFLOPS. This Cray-YMP has 8 processors which can be

used in parallel. Therefore, the speed of all these codes can be improved

significantly.

Previous experience (see previous section) shows that all these codes

have good shock capturing capabilities and conservation properties. A

brief comparison of some of the results obtained in the flat plate sim-

ulations are shown below. Figure 3 shows one of the grid planes along

the flow direction and the wall boundary. Figures 4a, 4b, 4c and 5a ,5b,

5c show the pressure contours and the velocity vectors in the vicinity of

21



the inflow obtained with the different codes, respectively. The contours

and velocity vectors of RAN$ and FLO2 are quite similar, while the

CNS pressure contours show some oscillations near the wall boundary

and steeper velocity profiles. Some of these differences are due to the

different higher-order methods implemented in the codes.

With regard to user friendliness and generality, all these codes are

research codes and they are being currently used in the simulation of

different flows of current scientific and engineering interest. The input

parameters definitions are explained in each code, although there is

no instructional manual or user friendly interface. The data transfer

and management is relatively easy and no major problems were found

in order to run these codes when no modifications were required. All

these codes can simulate complex flows in complex geometries. There

are strong research efforts undergoing with CNS in the Applied Com-

putational Fluids Branch and with FLO2 in the Aerothermodynamics

Branch. The IZTUFF code also includes chemistry capability and a

two-equation model, however, there is less accumulated experience with

this code.
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Turbulence Simulation

Following the work of Coakley and Huang 8 in the development and

testing of two-equation turbulence models in 2-D flows, the k -w model

has been implemented into the 3-D RANS code. Work is in progress

into the implementation of the k - e baseline models. The model equa-

tions are well known and they are reported in several publications s.

The simulation of a turbulent adiabatic flat plate flow was chosen

for evaluation against 2-D results and empirical correlations. The free

stream Mach number is M_ = 5, the Reynolds numbers are ReL =

1.4.107 and Reo = 10 4, and the wall temperature is Tw/Taw = 1.0. This

is one of the cases previously selected to analyze turbulence models 8.

The numerical simulation was done using 3 parallel planes along the

streamwise direction. The calculations were done in the middle plane,

while the lateral planes were used to obtain the Jacobians needed in

the 3-D code.

The numerical simulation was run 500 iterations with a CFL =

500 and required 67 CPU seconds in the Cray-YMP. The speed of the

calculation was less than 49 CPU micro-seconds per iteration and per

grid point. This speed is much faster than the one reported in Table 1

because this was a 2-D calculation, no fluxes were computed and solved

in the crossed flow direction between the parallel planes.

Figure 6a shows the 61x61 regular grid used in each parallel plane.

The grid points are clustered in the wall region and a blowup of the wall

grid is shown in Figure 6b. Figure 7 shows the normalized temperature

contours inside the boundary layer. The temperature rises inside the

boundary layer and is cooled by the cold wall. Figure 8 shows a few
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selected profiles of velocity vectors. It shows the turbulent boundary

layer profiles as well as the turning of the velocity vectors due to the

lip shock. Figure 9 shows the first wall spacing in wall coordinates

Y+ along the wall, it varies between 0.2 and 0.35. Figure 10 shows

the skin friction C s distribution along the wall. Figures 11a and 11b

show the turbulent kinetic energy K and mass weighted pK profiles

against wall distance Y+, respectively; and Figures 12a and 12b show

the specific dissipation rate ,_ and mass weighted pw profiles against"

wall distance Y+, respectively. Figures 13a and 13b show the calcu-

lated velocity profile compared with empirical correlations, the 1/7th

power law and the compressible law of the wall, respectively. Similar

results are reported in the 2-D calculations 8. Figure 14 shows the tur-

bulent eddy viscosity profile with a peak value at about 0.4 boundary

layer distance, which is inside the range of values between 0.3 and 0.5

found in other cold-wall boundary layer 8. Figure 15 shows a relatively

good agreement between the computed skin friction and the van Driest

II correlation. Although the agreement is within the observed experi-

mental uncertainties in cooled-wall flows, the agreement is better in the

2-D calculations s. Finally, Figure 16 shows a relatively good agreement

between the calculated 3-D and 2-D velocity profiles. This agreement

is quite good for turbulent calculations done with different codes and

different numerical methods.

The results of these simulations support the validation of the tur-

bulence model incorporated into the 3-D RANS code.
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Future Work

The main tasks to be accomplished next are:

1. Incorporate k- e models into base code, and evaluate performance

against 2-D flat plate flows and axisymmetric ogive-cylinder-flare,

M_ = 7, of Kussoy, M.I., et al.

2. Test and evaluate improved numerics that take into account second

law of thermodynamics and higher-order TVD flux limiters.

3. Study and development of compressibility corrections for 3-D tur-

bulence models:

3a. Simulate 3-D fin, Moo = 8.2, of Kussoy, M.I. et al.

3b. Simulate 3-D intersecting SWBLI (2 fins), M_ = 8.3, of Kussoy,

M.I. et al.

3c. Simulate 3-D fin, Moo = 6, of Law, C.H.

3d. Simulate 3-D swept compression corner, Moo = 3, of McKenzie,

T.M., et al.

4. Supervise and deliver information needed to implement compress-

ible two-equation models into the 3-D codes CNS with Brad Ben-

nett and Tom Edwards, FLO2 with Ethiraj Venkatapathy, and

IZTUFF with Greg Molvik.
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I. C()NSERVATION LAWS

Ia. ('ARTESIAN COORDINATES

The three-dinlensional conservation laws of mass, momentum, and en-

ergy for the inviscid equations of gas(tynanlics can be written in the strong

conservation form as

OU OG(U) OG(U)
--+ +--
Ot Oz O!j

where the conservative _ariables U are

OF: ( U )
+ -0

Oz

\['5 e

and the flux vectors G, Fy, F: are defined as

Pu2+p / pu_, l put_,

F,= F.= ,,,,,,
puw / pvw ] pw 2+p

u(e +p) \v(e +p)/ w(¢ +p))

1.1)

1.2)

1.3)

The primitive variables are the density p, the three velocity corot)orients

(u,v,w) and the static pressure p. For a perfect gas, the total energy per

unit volume, e, is related to the primitive variables according to the equation

of state which for a perfect gas leads to

e = p/(_' - l) + p( 2 + v2 + w2)/2 (1.4)

where -), is the ratio of specific heat.

Ib. GENERAL CURVILINEAR COORDINATES

The transformation of the conservation laws (eq. 1.1) from (z, y, :) Carte-

sian coordinates to (_, _, ;,) general curvilinear coordinates is written in strong

conservation form as

OJU OF_(U) OFz(U) OF3(U)
__+ -- +-- + -o (]..5)

Ot O_ 071 O_:,
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with the [iux ve,'tors El,F_,. E_ define(| as

F2 = J r]_ 7/_j q: Fy 11.6)

and the transfl)rmation matrix has tile following property

q_ q_ .r,i g, z,i = I ( 1.7 )

where I is the identity matrix and .I is the Jacobiail of the coordinate trans-

formation matrix.

J = .r_(y,z¢, - y_,z,_) + x,t(y,_,z_ - y_z_:,) + ,r_,(y_z, - y,z_) (1.8)

where the subindex notation of the matrix coefficients means partial differ-

entiation with respect to the subindex variable.

Ic. GALILEAN TRANSFORMATION PROPERTY

Since the Euler equations are invariant under a Galilean transformation,

it is sufficient to consider

__ OF([,:)OU + - 0 (1.9)
Ot Ox

as the one-dimensional problem associated with the flux-vector splitting and

the flux-difference vector splitting methods. The one-dimensional conserva-

tive variables U and flux vector F are defined as

U = [U2 = F = pu _ +p (1.10)

In the 1-D case. the primitive variables are the density p, the velocity , and

the static pressure p. For a perfect gas, the total energy per unit volume, c.,

is related to the primitive variables according to the equation of state as

= p/(7 - 1) + p(£)/2 (1.11)
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II. FLUX-VECT()R SPLITTING

IIa. STEGER AND \VAFIMING METHOD

Steger and Warming I have l)rOl)osedthe following flux-vector splitting

metho(l. Since the flux vector F is an homogeneous flmction of degree ono in

U. it can be expressed in terms of its Jacobian matrix A as

OF.

F=_[ =AU (2.1

where F can be rewritten as

f = | pu 'e + p = (3 - 3)(Pu)2/2p + _/(3 - 1) ('2.2
\,,(_ +_,) \",_(p,,)h,- (3- 1)(p,,)_12p _)

o1" as a function of tile conservative variables as

U2 )
F = (3 - -r)u2212u1 + Ual(_.- l) 2.3)

\TUaU2/U, - ('_ - 1)U2 a/2U,'z)

and the Jacobian matrix A becomes

( o o)OF -(3 - -_)u2/2 (3 - 7)u (? - 1) 2.4)

A - 0U - -uH + (7 - 1)ua/2 H -- (_I -- 1) tt2 7 u

and the total enthalpy per unit mass, H, is

H = (e +p)/p = 7e/p - ('7-- 1)u2/2 (2.5a)

H = "yp/p('y - 1) + u2/2 = c2/(7 -- 1) + u2/2 (2.5b)

The flux vector F can be rewritten using a similarity transformation as

F = AU = SAS-1U (2.6)

where A is a diagonal matrix whose coefficients are the eigenvalues of the

Jacobian matrix A,

diagA = (u, u + c, u - c)

c=_

(2.7)

(2.8)
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and S is th_ " cohum_-eigenvoctor matrix

S (10 )(1 1 1)It 1 0 c -c

S-' = 0 1/2c (_- 1)/2c 2 -u 1 0

0 -1/2c (_- 1)/2c 2 _2/2 -u 1

2.9.!

2.9b)

Tile flux vector splitting is defined by tile decomposition of tile eigenvalue

matrix A into a non-negative and a non-positive diagonal matrix,

A = A + + -\-

A+ = (A+IA t)/2

A- = (A-Ik I)/2

2. lOa)

2.10b)

2.10(')

where Ikl is defined as a matrix whose coefficients are equal to the absolute

value of the corresponding coefficients of the matrix A. Thus, A+ includes

only the non-negative eigenvalues of A and A- includes only the non-positive

eigenvalues of A, respectively. Following this splitting method, the flux vector

F is rewritten as

F = S(A + + A-)S-_U = (A + + A-)U = F + + F- (2.11)

The spatial derivatives of F + and F- are usually approximated with the

standard implicit first- and second-order backward and forward difference

operators, respectively. Flux limiters are introduced in the higher-order dif-

ference operators to eliminate oscillations in the presence of discontinuities,

such as shock waves. The Euler equations (1.8) become

OU OF + OF-

o-T + _ + o_ -° (2.12)

and the difference operators are

52F + = (F, + - r,+,)/Sz + 6_-(F,+ - 2F,+_ + F,+z)/26.r (2.13)

5_+F F = (F,__, - FZ)/fx-a+(F, - - 2F,__, + F,__2)/2&c (2.14)
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with fir._t-or(l,_r when o = 0 and s_'(:on(t-order when o = 1. ()th,'r higlwr-

or(h'r differ_'n,:_' op('rators are expressed in a similar form. su('h as Fromm

s,'h_,m_' and third-order tfiased scheme. Equatioli.S (2.13) and (2.14) _:an also

t)e written as a extrapolation at (:ell interfaces

(2.15

(2.16)

where

r +,+,/2= r,+ + *,+,/,_(r,+- F,+-,)/'-'

F,-,/2 = 5- + O+,/2(F, - - F,-+,)/2

with the appropriate definition of O at cell interfaces.

An alternative approach proposed by van Leer 2 is the MUSCL method.

In this method, the variables U are extrapolated toward the interfaces and

then the flux vectors F + and F- are evaluated. Therefore

_'i--l/2)6.F, = ( F+(U_,/2) - F+(Ui-_,/2) + F-(U+,/2) - f-( r+ )l£r (2.19)

and

ULll2 = Ui + 4b/+(Ui+l - Ui)/2

_UuT+,l_ = u, + 07,, - u,_,)/2

(<_o0)

(2.21)
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IIl_. VAN LEER METH()D

Although the flux w,_'tor F is a continuous (lifferential_h' flm('tion, th_ '

fluxe,., split F + and F- of Steger aI/d \Varming (les(:rilwd in tile above previous

sectimi are not differelitiable at zeros of the eigenvahws. A method l_rotmsed

by vail Leer defines the split fluxes as continuous differentiable flm('tions

including sonic and stagnation points. The flux vector F express,'d as a

flmction of density" p, sound speed c, and Mach l:mmber M = ,,/c becomes

( )F = pc _ (M _ + 1/7) (2.'2"2)

The fol'Illlllas for the flux split given in terms of the Math llUllli)er are for

supersonic flows, IM I> 1,

F + = F F- = 0 for M _> 1 (2.'23)

F + = 0 F- = F for M < -1 (2.24)

and for subsonic flow, I M I_< 1, the flux vectors are defined as

F + = +pc2((ZtI + 1)/2)2((7 - 1)M" ± 2)/")

+p_._((.,_..s+ 1)/2)_((-r,- 1)M + 2)_/_0(__ - 1)
(2.25)
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III. FLUX-DIFFERENCE SPLITTING

The one-dimensional conservation laws of mass. nmlnentunl, and energy

for tile inviscid gasdynanfics equations can 1)e written in a (lis(:rete space as

a)U = -At GF(U)/A:r (3.1)

There are significant differences in the numerical methods between most

finite volume and finite difference approaches. One of these differences is the

location of the cell areas.

• Finite \7olume method.

In a finite volume approach, the flux difference splitting are defined as

follows

GF, = _5_F+ + GF,- (3.2)

where F, = F(Ui) and the flux differences are

and

_: = (xi+, - *i-, )/2 (8.4)

The flux difference may be rewritten also as

gSFi = hi+ } - hi-x2 (3.5)

• Finite Difference method.

In a finite difference approach, the flux difference splitting are defined as

G F G F + G F-
- + -- (3.6)

Ax Ax+ Ax-
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au(t a first-order uI)wind metho(l gives the f()llowing ('(Iuati(ms

 rFF = F? - F?_,

F = F,+, - FF (3s)

A + = .r, - xi-, (3.9)

A_- = .r,+l - .r_ (3.10)

II1 both methods, tile fluxes are split in delta form based on a .la,:olfian

matrix A which follows 'Roe's property U,'

(_F - A6U 3.11)

Under a similarity transformation, the matrix A is expressed as

,4 = S A S -1 3.12)

where A is a diagonal matrix with the eigenvalues of the matrix A as diagonal

coefficients, the matrix S is composed by the eigenvectors of the matrix A.

The matrix S-' 5U is also the expression of the characteristic variable rep-

resentation of the conservative variables U. The positive and negative flux

differences are defined according to the sign of the eigenvalues as

dF + = A + (Ui - [ri-1 ) and b'F i- = A- (Ui+l - [ri) (3.13)

where

A + = SA + S -j and A- = SA- S -1

A + = (A+IA I)/2 and A- = (A-IA I)/2

(3.14)

(3.15)

In t)oth methods, finite volume and finite difference, the flux differences

may be combined into a equivalent expression as (H.C. Yee, NASA TM

101088)

5Fi = hi+ } - hi_½ (3.19)
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wtlere

h,+__ = (F,+, + F,- ] .4 L(U_+_ - U,) /'_. _:3.:_()_

where IA I is the Jacobian matrix with the al)solute value of its eigenvalu('

coefIi(:ients,

I.a I= s IAI s-' (3.2t)

The main differences between tile numerical metho(ls are due to tit(' ,'hoi('e

of finite volume or finite difference approach, the definition of the .Ia_:ol)ian

matrix ,4, and the implicit operator procedures..
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IIIa. R()E 5IETH()D

Tile Ro_"s method desc'ribe(l here is a finite volmne, flux (lifferen,'_' split-

ting m,'tho(l using Roe's averaged varialfles. This method uses tlw al_ov_'

defined equations (3.19, 3.20, and :3.21) and it is based on the property that

the the flux F is an homogeneous flmction of degree one of the conservative

variat_les U. Therefore

F = A U (3.. 1)

where ,4 is the Jacobian matrix of the flux vector F. Thus, at each nodal

point i

Fi = F(Ui) = Ai Ui (3,1.2 )

On the other hand, at the cell interfaces between the cells .ri and .r,+l, Roe

defined a set of averaged variables to define the coefficients of the .lacobian

matrix A subject to the following condition

5F = Fi+l - Fi = A([ri+l - U,) = A6U = SAS-I(5[ ,r (a..3)

The average density is defined as the geometric-averaged value of the nodal

points, the averaged velocity components and total enthalpy are defined as

weighted-averaged nodal values

U _ 1 = (I'_ffUi-_-I "_- lZ_}/( 'I'l'r -{- 1)

,+-_

H* =(WH,+ + H,)/(W + I)
i-l-½ 1

= V/H * -- u'2/2c*

w= pgT-27,+,/p,

Thus, the Jacobian matrix becomes

OF / 0 1
- -(3 - 7)u'2/2 (3 - ^1)u*

Ou

(3a.4)

(3a.5)

(3a.6)

(3a.7)

(3a.8)

o) (3a.9)
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and tlw _'ohmm-eig('nv_ctor matrix and its inx_w,_(_ar('

,jC (1 0o)(11 1 )t/* 1 0 0 (' -c

,,*_/2 ,,,* I 0 c*_/(-_ - I) c*_/(3 - i)

(i °S -1 = 1/2c*

-1/2c*

and the diagonal matrix A is

oo)(_ - 1)/2c .2 -u* 1 0

(_-1)/2c *'2 u'2/2 -u* 1

( 3.. 10

(3_1.11

diagA = (u*, u* + c*, u* - c*) (3n.12
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IIIt,. CSCM XIETH()D

This method is a finite differem'e, flux diff'(,rence splitting metho(l us-

ing "Roe's property U'. This method uses the above defined equations (3.6

through 3.18) and it is based on the following property

3/,.1)

The flux difference splitting is defined based on

6F + = SI+ S-I A 6U 3t,.2)

where I is the identity matrix and it is Slflitted into a non-negative matrix

and a non-l)ositive matrix according to the sign of the coefficients

diagI + = :El • sign(u,u + _, ii - c) (3b,3)

where the overbar denotes arithmetic averaging.

The matrix A is defined as

and the matrix S represents a transformation matrix from the conservative

variables to characteristic variables,

(1 00)(  j2)S = ____u 1 0 0 fS/2 -re/2 (3b.5)

u2/2 /i 1 0 _-fi/2(3, - 1) _-f/2(7- 1)

o ( , oi)S-' = 1/y ('7- 1)/5--_ -___ 1
0 -1/fie (7-i)/_ _2_ u2/2 -h

(3b.6)
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Ill,'. RANS .kIETH()D

The RA.XS's method is similar to Roe's flux (lifferen('o splitting method.

however it is based on simple arithmeti,: averaging of primitive val'ial)los. Tht'

flux differences are also defined as

6F = Fi+: - F, = A(Ui+I - Ui) = A6U = SAS-1dU (3c.1)

in order to preserve tile conservative property of the fluxes. The ,'01::l::::-

eigenve,:tor matrix S and its inverse are

(: 0!)(,,oc= - 1 0

,7/'2 0 0
p/2 p/2 )p(_-d)/2 -i,(_ +a__){2)_12(? - :) _12(?

(3,'.2)

(-1/p 0 ()-l)/5--fi '_ ( 1 0 0)
S-: = 0 1/p_: (I + d/_)(7 - I)/_7p_ -a I 0 (3c.3)

0 -:/_ (:-d/_)(?-:)/_/ a_-_/2 -_ :

and the diagonal matrix A is defined with the eigenvalues of the matrix A as

diagA = (u, Cz+ _, _ - _) 3c.4)

and tile coefficients

a = (_ + >_/>)/2

d = (_ - _/>)/2

= _/(_/>)+ d=
¥

(3c.5)

(3c.6)

3c.7)
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RANS METHOD

I. CONSERVATION LAWS

Tho _'onservation laws of mass. momentum.

Navier-Stokes equations can be expressed as

OU OF_ O& O&

+ o7, + + 0,,3-0

and energy for the 3-D

( 1-t

or in compressed vector notation (where repeated sul>in(ti_'es in any t_'rm

iml)ly summation over the index range, sul)-index t following a conll/ta imply

partial differentiation with respect to time. and sub-index nunJ)ers following

a comma iml)ly partial differentiation with respect to the respe_:tive sl)atial

coordinate directions) as

U,t + Fs,s = 0 (1I,)

The vector U represents the conservative dependent variat)les,

[7 _= (p, pUl, pu2, pU3, e:)

and Fj are the flux vectors in the respective Cartesian coordinates direction

l'j

Fj =(puj, flUl uj + P61j -- ";lj, flu2u) 4- p62j -- r2j,

puau i + P6aj -- r3j, (e + p)uj -- uirij -- t_Z,j) (3)

,o is the fluid density, uj are the velocity components in each coordinate di-

rection, p is the static pressure, _ is the thermal conductivity, T is the fluid

temperature, and e is the total energy.

The viscous stress tensor r,j including the turbulent eddy viscosity is

defined as

r o = 2(# + #,)(&j - ,5oS,,,,/3) (4)

where __j is the second-order isotropic Kronecker delta.
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Kor a t),u'fl'(:t gas. the pressure is related to tit(' total energy as

= 1,/(:, - 1) +/,,,_,,j/2 (5)

where _ is the ratio of the sI)ecific heats at constant pressure and "cohmw, and

the temperatm'e is related to tile density aim pressure through the equation

of state

p = RpT 6)

The conservation laws written in generalized curvilinear coordinates ,,_ =

_i(.r;) are

U,, + _,,a F_,; = 0 (7)

where _ represents the curvilinear coordinate direction _. The conservation

laws can be rewritten in weakly-conservative form as

(gu),, + J_,_ Vj,_ = 0 (S)

or in strongly-conservation form as

(,IU),, + (J(i,;Vi)-i = 0 (9)

where J is the Jacobian of the coordinate transformation

J = ¢ijk.rl, _x2' _ x3, _ (10)

and e,_k is the third-order isotropic alternating tensor. The metric coefficients

are evaluated at the interface between the grid points of the spatial difference.

according to their mathematical definition as

.J(i,s = 0.5 ¢ijk esn,n X n,-j X m, k ( 11 )

The present version of the RANS code uses the weakly-conservative form

shown in the above equation 8 . Different tests and experiments in subsonic,
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transonic', awl sut)ersoni(' flows have shown that the conservation l)r()l)(,rti_,s

are nmintained once convergence is achieved with a se,'ond- or higher-ord(,r

scheme. An strongly-conservative version of the code is in progr¢,ss.

II. FLUX-DIFFERENCES

All flux differences are treated implicitly in order to increase stability

and to be able to use large increments of time or CFL nunlbers. The numer-

ical scheme for the viscous fluxes is second-order central difference, while the

numerical scheme for the inviscid fluxes is higher-order TVD Ulmind flux-

difference splitting. The higher-order TVD scheme is based on the ()sher-

Chakravarthy "'minmod" method applied to the flux differences; it has the

(:apat)ility of to represent various higher-order differences: first-order up-

wind, second-order upwind, third-order upwind biased, second-order Fromm

scheme, and other combinations of upwind and central differences.

The differentiation of the inviscid fluxes is sinfilar to Roe's t-lux differ-

ence splitting nlethod, however it is based on sinlple arithmetic averaging

of primitive variables. Each flux difference term Fj,; of the conservation law

equations is defined as

(_F = F_.I_ 1 - F_ = A([,_+ 1 - _) = nt_r (1_)

in order to preserve the conservative property of the fluxes (the subindex j is

omitted in equation 12 for simplicity). The Jacobian matrix A is decomposed

using a similarity transformation as

A = SAS-' (13)

where 3_ is a diagonal matrix whose coefficients are the eigenvalues of the

matrix A, and S is the column-eigenvector matrix of A. The matrix $ is

fltrther decomposed in two matrices

S = MT (14)
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where .u represents the transfornmtion matrix of ('(ms('rvativ(' an,l primi-

tive varial)h" differences, and T rel)resents the transfornmtion matrix 1)otween

chara(:teristic and primitive varial)le differences. For the flux (liff_wm'('s in

the _, coordinate direction, these matrices are defined as

1 0 0 0 0 /

Ul 1 0 0 0

M = [ a2 0 1 0 0 (15.
/ aa 0 0 1 0
\_/2 ul a2 03 I

(1oooo1-/_ 1 0 0 0

M -1 = -fi2 0 1 0 0 (15b

-_3 0 0 1 0

utttt -- uiut/2 --Ul --02 --u3 1

(-p 0
0 --t

x 1,5

0 --t
X2,_

0 --t
x3,5

0 0

T=

T -1

0

--I

x2 ,._

--!

x3,5
0

-1/_ 0
0 ^'

"r 1 ,_

0 ^l
Xl ,_l

--t

0 _,,_/p_

0 -_,,/¢_

),p/2(_,- 1)
I

-_",,,_(_+ _,)/2
-_",,_(_+ ,_)/2

-!',,._(_+ _)/_-
5-_/,)(,.),_ ].)

0 0

8',,_/p_ 8'1,,_/,_
-_',,_/,_ -_',,_/,_

('_-!)/_ /

(1 +-@_)(_ - 1)/_/_ (_/_)(_ - _)/_/

(16b)

(16b)

where the arithmetic averaging is denoted by the overbar symbol. Although

the density p could be factored in the T and T-' transformation matrices, as it

has been pointed out by T.J. Coakley, the density factor has been introduced

in order to write the characteristic variables in nondimensional form. The

prime symbol (y') is used to denote unity magnitude of the vector, thus

--I

V/(_ + _ 2 (17c)
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with no summation of repeato_l in(lic'es in tile alcove e(luation (17). Th,,

hat svmtml (,_.) is used to denote the inverso matrix _'ooffi_:ionts of tho non-

orthogonal matri,'os.

,ri,._ = (.r 1,5 - x,,5(Tii, _ ..ri, _))([_211(31/,11(,I) 2 (18.)

--t _ --* -- )2= (xl,? ;rl..i(_i ,) • .r,._))(1 -- (7Fi: 2 .ri,_ ) (1Sb)

= (a'2,g_,,a - "r3.._, ,2 )( 1_211_31/.11_11 (18,')

which are all equivalent expressions.

The diagonal coefficients of the eigenvalue matrix 3. for the flux diffez'en('es

in the _l coor(tinate direction are

_ti_gA= (_,,,_j, _,,j_,, _,.,a,, 0.5_,,,(,,j + ,b) + _. 0.5_,,,(,_, + a,l - c) 19)

where

¢_2 c_2a = 1,j-_/p+ 20)

,4 = _i ,j6u./ 21 )

buj = (_j - pu,/p)/2 (22)

a) = (../+ >-fij/,o)/2 (23)

The inviscid first-order flux differences terms (see equation 12) are split

according to the sign of the eigenvalues as

_SF = VF + + AF- (24a)

VF + = A + VU = SA+S -l VU (24b)

AF- = A- AU = SA-S -1 AU (24c)

where X7 is the backward-difference operator and A is the forward-difference

operator. The coefficients of the diagonal matrices A + are defined as

A+ = (A + [),1)/2 (25.)

),- = (._ -I._1)/2 (251,)
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Un,onditionally stalJe Euler imt)li('it methods are ('onstru(:ted 1,v fl,rw_u'_l

upwind differen(:ing flux differences with positive oigenvahms and lm,'kwar,t

differencing flux differences with negative eigenvahms.

III. HIGHER-ORDER TVD FLUXES

Higher-order spatial TVD flux differences in the right-hand-sid( ' of tlw

inviscid terms of the conservation law equations are define(l t).v using tim

"minmod" linfiter of Osher and Chakravarthy applied on the conlph't( ' split

flux difference instead of the characteristic variable difference. For a giv(m _,

direction and at the j grid point.

= , F + + A j+½ F-/_jF ,._Xj__

+c[+_l-0 ((Aj+½F--Aj+__F-)+(Aj_IF +_ -Aj__F +

i+6 -+-7-- -- ] (26)

where the first-order terms, the second-order upwind-difference increment

terms, and the second-order central difference increment terms are shown in

the first, second, and third line of the above equation 26, respectively. 0 <

c _< 1 is an input factor that allows to change from first-order to higher-order

differences monotonically. AF and AF are the limited split flux differences

defined by

Aj+½F + = minmod(Aj+ iF +, 3Aj_}F +)

A j+.} F- = mmmod(A)+.} F-, �3A j+½ F- )

Aj___ F +) = minmod(zNj__} F + , _3zSj__ F + )

Aj_½ F- ) : minmod( Aj_½ F-, 3Aj+½ F- ) (27)

The minmod function is defined as

minmod(a, b) = sign(a)max(O, min(lal, bsign(a))) (28
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an(l r('tm'ns a vahw of zero if t h(' product ,b < 0. or a value equal to the,

arglum,nt with the minimum magnitude if both arguments ,, and l, ha\_ _ the'

salm' sign.._ is a compression parameter determined in the range giv_,n 1)v

a-c)
1 < ,_ < -- (29t

- -1-0

The ntaximum value of is used because it introduces less dissipation. The

nmneri('al scheme is second-order upwind when O = -1 (3 = 2), Fromm's

scheme when o = 0 (3 = 3), third-order upwind biased when , = 1/3 (3 = 4).

and second-order central-difference when 4 = 1 (,_ _ oc).

For example, the second-order flux-difference split upwind schem(' with

c=lis

_3&. ,F+ 1Aj__F+,_jF -2 ;-_ -

3A 1 1Aj___F_ (30)

where the minmod function

0 < Aj__F+= minmod(Aj__F +, 2Aj___F +) < 2Aj_IF +

0 >_ Aj+_F-= minmod(Aj+_F-, 2Aj+½F-) > 2As+½F-

(31a)

(31b)

Thus, the TVD scheme limits the split fluxes with a factor between 0.5 and

1.5 times the first-order flux-difference,

3A F + 1Aj_-_F+ < 3Aj_½F+ (32n)Aj-½ F+ <-4 J-½ - -2 - 2

Aj+½F- >_ 3Aj+½F- - _ _ _Ai+IF- (32b)

IV. IMPLICIT NUMERICAL METHOD

The numerical method is based on an implicit "method of planes" sym-

metric Gauss-Seidell relaxation scheme. The data is conveniently stored on
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sm','_'ssiv,' plan('s along the strcamwis(' <'oordinat('. and tlw svst('m of _'q, la-

tions is solv('d in each su(:cessive t)lan( ' along the forward direction, first.

and along the tm,'kward (lirection, afterwards. In each plan( _. the solution ix

obtained t).v using a two level pseudo time dependent relaxation procedure

based on a diagonally dominant approximate factorization DDADI. The space

marching Mternating directional sweeps in the strea,nwise direction are yon

Neumann unconditionally stable for zones of subsonic and streamwise sop-

arated and reversed flows as well as supersonic flow. The space marc:hing

method results in improved propagation of nonlinear effects to a,'('elerat(_

convergence to steady state, nmch as do the more restrictive PNS techniques.

The diagonal dominant approximate factorization of the left-hand-side of

the conservation law equations including the implicit viscous terms leads to

the following block tridiagonal equation sequence for the _, plane relaxation

method

(-A_2, D, A_ ) 5U* = -RHS '''+1

(-A_',D, A_-)SU =-D_U*

(33a)

(33b)

The diagonally dominant matrix D involves the first-order split Jacobian

matrices and the Jacobian matrices of the viscous terms of each coordinate

direction

= 4 + (34)D I+. _,-A; +A-_-Ag+AL--A-_

and the solution is updated from time step n to time step n + 1

U" + _ = U" + 5U" (35)

el)serve that the RHS of equation 33a has an exponent _, 7, + 1 because some

terms in the streamwise direction are already updated at time step ,, + 1 due

to the plane relaxation procedure.
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A N(_wron-lRaphson acceleration t)ro,_,_dur(_ is ot,tain(_d l)y ,_olving (_a,'h

plalw twice or more times in each relaxation Se(lUe,l('e. This proce(hlr,_ pro-

(lu,:(_s significant imt)rovement in the proi)agation of nonline_tr effe(:t,s due to

the nonlinearity of the .lacobian matrix .4.
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